## **B50E 6x6 43 000 L** Articulated Water Truck



#### **ENGINE**

Manufacturer
Mercedes Benz (MTU)

Model OM473LA (MTU 6R 1500)

Configuration
Inline 6, turbocharged and intercooled

Net Power 430 kW (577 hp) @ 1 600 rpm

Gross Torque 2 850 Nm (2 102 lbft) @ 1 300 rpm

Displacement 15,6 litres (952 cu.in)

Auxiliary Brake
Jacobs Engine Brake®

Fuel Tank Capacity 630 litres (166 US gal)

Certification
OM473LA (MTU 6R 1500) is EU
Stage IIIA / EPA Tier 3 emission
level equivalent

#### TRANSMISSION

Manufacturer Allison

Model 4800 ORS

Configuration
Fully automatic planetary
transmission

Layout Engine mounted

Gear Layout
Constant meshing planetary
gears, clutch operated

Gears 7 Forward, 1 reverse

Clutch Type Hydraulically operated multi-

Control Type Electronic

Torque Control Hydrodynamic with lock-up in all gears

#### TRANSFER CASE

Manufacturer Kessler Model

W2400

Layout Remote mounted

Gear Layout

Three in-line helical gears

Output Differential Interaxle 29/71 proportional differential. Automatic inter-axle differential lock.

#### **AXLES**

Manufacturer Bell

Model 30T

**Differential** 

High input controlled traction differential with spiral bevel gears

**Final Drive** 

Outboard heavy duty planetary on all axles

#### **BRAKING SYSTEM**

Service Brake
Dual circuit, full hydraulic
actuation wet disc brakes on
front and middle axles. Wet
brake oil is circulated through a
filtration and cooling system.

Maximum brake force: 458 kN (102 962 lbf)

Park & Emergency Spring applied, air released driveline mounted disc

Maximum brake force: 215.5 kN (48 446 lbf)

Auxiliary Brake
Jacobs Engine Brake®.
Automatic retardation through
electronic activation of wet
brake system.

Total Retardation Power Continuous: 546 kW (732 hp) Maximum: 963 kW (1 291 hp)

#### **WHEELS**

Type Radial Earthmover

Tyre 875/65 R 29 (29.5 R 25 optional)

#### **FRONT SUSPENSION**

Semi-independent, leading A-frame supported by hydropneumatic suspension struts

Option: Electronically controlled adaptive suspension with ride height adjustment

#### **REAR SUSPENSION**

Pivoting walking beams with laminated rubber suspension blocks

Option: Comfort Ride suspension walking beams, with two-stage sandwich block

#### **HYDRAULIC SYSTEM**

Full load sensing system serving the prioritised steering, body tipping and brake functions. A ground-driven, load sensing emergency steering pump is integrated into the main system.

Pump Type Variable displacement load sensing piston

Flow 330 L/min (87 gal/min)

Pressure 315 bar (4 569 psi)

Filter 5 microns

#### STEERING SYSTEM

Double acting cylinders, with ground-driven emergency steering pump

Lock to lock turns 4,9

Steering Angle

#### **PNEUMATIC SYSTEM**

Air drier with heater and integral unloader valve, serving park brake and auxiliary functions

System Pressure 810 kPa (117 psi)

#### **ELECTRIC SYSTEM**

Voltage 24 V

Battery Type
Two AGM (Absorption Glass
Mat) type

Battery Capacity 2 X 75 Ah

Alternator Rating 28V 80A

MAY VEHICLE CREEK

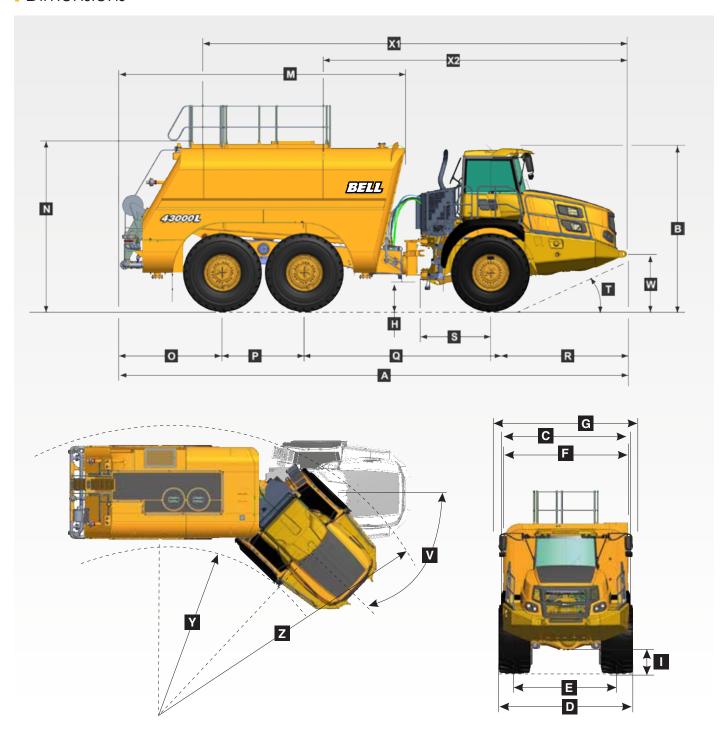
| MAX | AFHICLE 251 | EED      |
|-----|-------------|----------|
| 1st | 4 km/h      | 2,5 mph  |
| 2nd | 9 km/h      | 6 mph    |
| 3rd | 17 km/h     | 11 mph   |
| 4th | 23 km/h     | 14 mph   |
| 5th | 33 km/h     | 21 mph   |
| 6th | 44 km/h     | 27,3 mph |
| 7th | 51 km/h     | 32 mph   |
| R   | 7 km/h      | 4 mph    |
|     |             |          |

#### **WATER TANKER PLUMBING**

Centrifugal water pump

Rate of Flow 5 400 L/min

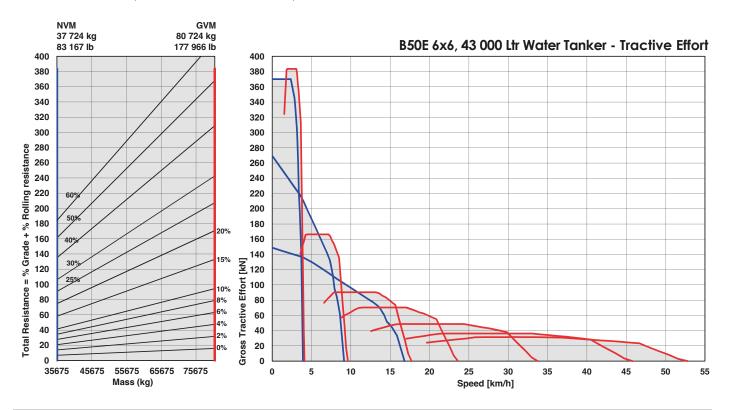
Head 70 m


#### CAB

ROPS/FOPS certified 76 dBA internal sound level measured according to ISO 6396

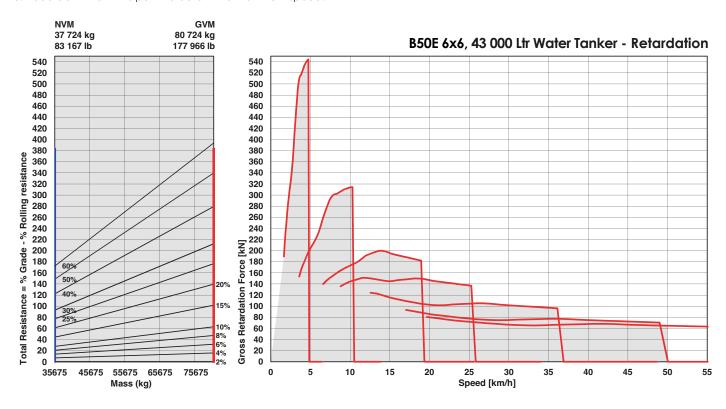
## Load Capacity & Ground Pressure

| OPERATING WEIGHTS |                  | GROUND                 | PRESSURE                | LOAD CAPACITY |                  |
|-------------------|------------------|------------------------|-------------------------|---------------|------------------|
| UNLA              | ADEN             | LADEN (No sinkage/Tota | al Contact Area Method) |               |                  |
|                   | kg (lb)          | 29.5 R 25              | kPa (Psi)               |               |                  |
| Front             | 16 442 (36 248)  | Front                  | 326 (47)                | Rated Payload | 43 000 litres    |
| Middle            | 10 708 (23 607)  | Middle                 | 395 (57)                |               | (11 350 gallons) |
| Rear              | 10 574 (23 312)  | Rear                   | 395 (57)                |               |                  |
| Total             | 37 724 (83 167)  |                        |                         |               |                  |
| LADEN             |                  |                        |                         |               |                  |
| Front             | 19 926 (43 929)  | 875/65 R29             | kPa (Psi)               |               |                  |
| Middle            | 30 066 (66 284)  | Front                  | 296 (43)                |               |                  |
| Rear              | 30 732 (67 752)  | Middle                 | 366 (53)                |               |                  |
| Total             | 80 724 (177 966) | Rear                   | 366 (53)                |               |                  |


# Dimensions



| Machine Dimensions |                                         |           |                |    |                                              |                          |  |  |
|--------------------|-----------------------------------------|-----------|----------------|----|----------------------------------------------|--------------------------|--|--|
| Α                  | Length - Transport Position             | 12 279 mm | (40 ft. 3 in.) | 0  | Rear Axle Centre to Bowser / Tank Rear       | 2 543 mm (8 ft. 4 in.)   |  |  |
| В                  | Height - Transport Position             | 3 820 mm  | (12 ft. 6 in.) | Р  | Mid Axle Centre to Rear Axle Centre          | 1 950 mm (6 ft. 5 in.)   |  |  |
| C                  | Width over Mudguards                    | 3 790 mm  | (12 ft. 5 in.) | Q  | Mid Axle Centre to Front Axle Centre         | 4 438 mm (14 ft. 7 in.)  |  |  |
| D                  | Width over Tyres - 875/65 R29           | 3 832 mm  | (12 ft. 7 in.) | R  | Front Axle Centre to Machine Front           | 3 351 mm (11 ft. 0 in.)  |  |  |
| D                  | Tyre Track Width - 29.5R25              | 3 714 mm  | (12 ft. 2 in.) | S  | Front Axle Centre to Artic Centre            | 1 558 mm (5 ft. 1 in.)   |  |  |
| Ε                  | Tyre Track Width - 875/65 R29           | 2 949 mm  | (9 ft. 8 in.)  | T  | Approach Angle                               | 23°                      |  |  |
| Е                  | Tyre Track Width - 29.5R25              | 2 952 mm  | (9 ft. 8 in.)  | V  | Maximum Articulation Angle                   | 42°                      |  |  |
| F                  | Width over Tank / Bowser                | 3 699 mm  | (12 ft. 2 in.) | W  | Front Tie Down Height                        | 1 269 mm (4 ft. 2 in.)   |  |  |
| F                  | Width over Tank / Bowser (with hose)    | 3 849 mm  | (12 ft. 8 in.) | X1 | Tank Lifting Centres                         | 10 218 mm (33 ft. 6 in.) |  |  |
| G                  | Width over Mirrors - Operating Position | 4 027 mm  | (13 ft. 3 in.) | X2 | Front Lifting Centres to Tank Lifting Centre | 7 310 mm (24 ft. 0 in.)  |  |  |
| Н                  | Ground Clearance - Artic                | 558 mm    | (1 ft. 9 in.)  | Υ  | Inner Turning Circle Radius - 875/65 R29     | 4 694 mm (15 ft. 5 in.)  |  |  |
| -                  | Ground Clearance - Front Axle           | 555 mm    | (1 ft. 9 in.)  | Υ  | Inner Turning Circle Radius - 29.5R25        | 4 753 mm (15 ft. 7 in.)  |  |  |
| М                  | Tank / Bowser Length                    | 6 877 mm  | (22 ft. 7 in.) | Z  | Outer Turning Circle Radius - 875/65 R29     | 9 408 mm (30 ft. 10 in.) |  |  |
| N                  | Maximum Tank Height                     | 4 137 mm  | (13 ft. 7 in.) | Z  | Outer Turning Circle Radius - 29.5R25        | 9 349 mm (30 ft. 8 in.)  |  |  |


## Gradeability/Rimpull

- 1. Determine tractive resistance by finding intersection of vehicle mass line and grade line. NOTE: 2% typical rolling resistance is already assumed in chart and grade line.
- 2. From this intersection, move straight right across charts until line intersects rimpull curve.
- 3. Read down from this point to determine maximum speed attained at that tractive resistance.



### Retardation

- 1. Determine retardation force required by finding intersection of vehicle mass line.
- 2. From this intersection, move straight right across charts until line intersects the curve. NOTE: 2% typical rolling resistance is already assumed in chart.
- 3. Read down from this point to determine maximum speed.

